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summary

We propose a general and analytical method for describing the limits of the planar workspace, i.e. the border of the part of the plan space reached by the end of a
human or robot arm. . The proposed method is broken down into three independent steps, none of which calls for calculations of derivatives, determinants or
eigenvalues, or using methods of numerical resolution of nonlinear problems, all often used in the literature. The first step, already presented in previous work,
consists in geometrically interpreting the necessary degeneration of the Jacobian matrix of the position function, at the edge of the workspace and a condition of
alignment of certain joints makes it possible to determine a meeting of arcs of a circle that contain the border. Then, for each of the arcs of a circle, the study of the
infinitesimal variation of a point with respect to this circle makes it possible to eliminate all or part of the arcs of a circle previously defined, which is not on the
border. Finally, a global course of the meeting of the arcs of circle makes it possible to determine the external border as well as the internal border of the possible
hole of the workspace which contains the origin.
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1. Presentation of the problem

    In robotics as in biomechanics, knowledge of the working space, an area of   space that the end of a human limb or the arm of a robot can reach, for example, is
fundamental. The border of this workspace must be correctly defined. The joints considered are pivot links, defined by an interval to which the angle between the
two segments around the link belongs. In the plane case, this Note is the continuation of works [2,3] where we proposed a local condition necessary but not sufficient
for a point in the workspace to be on its border. Founded on a simple geometrical property, this condition made it possible to obtain in analytical form, a set of arcs
of circle, without the usual calculations of determinants carried out in symbolism, which contain the border, which constitutes step 0 of the method (see section 2).
Having in mind the simplicity and robustness of the proposed method, we now wish to eliminate the parts of the determined arcs of circle which would not be on the
border of the workspace. Here again, we propose a general, analytical and complete method, based solely on simple calculations of scalar products, which
constitutes step 1 of the method (see section 3). Finally, we propose a global necessary and sufficient condition which makes it possible to analytically give the
border in the form of meetings of arcs of a circle (section 4). We will give some possible applications (section 5). Then,

    As in [2,3], we consider  a direct orthonormal reference,  an integer greater than or equal to one,   strictly positive numbers, and 
and   angles with

We define the workspace as the set of points  checking

and constraints

(see figure 1).

Figure 1. The plan system considered.

We consider the function  of
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towards , defined by

    Many works naturally relate to the determination of the boundaries of the workspace. For step 0, the function Jacobian is necessarily of rank less than one, if
the point is on the border. Systematically, this step is resolved symbolically by canceling all the possible extracted determinants [5,6,7,8,9,10]. For step 1, we refer
for example to the numerous works of Abdel-Malek [7,11,8]. The calculations presented are valid in a more general framework than ours (2 or 3D, spherical type
connections or sliding pivot). The natural condition used is based on a development limited to order 2 locally around a point where the Jacobian is degenerate. The
quadratic form associated with the Hessian is studied there. Then the sufficient condition not to be inside the workspace, is programmed in symbolic calculation
(with Mathematica ® for example) and the calculation of rank and matrix spectrum are used. These are the signs of the eigenvalues   which make it possible to
discriminate the different cases.

    These calculations are, in theory quite simple, but can have strong numerical instabilities, in addition to being long. On the contrary, we try in this note to use the
particular structure of our plan problem. We use in particular the fact that we move locally along a circle. No calculation of derivative or spectrum of matrices is
carried out.

    Other numerous studies concern the resolution of this problem for manipulators in series or in parallel [12-24]. However, none proposes a general method and
these works relate to particular cases (small numbers of degrees of freedom) or are made with numerical approximations or thanks to random simulations.

    To our knowledge, only one recent and very interesting work proposes a general method of resolution to determine the limits of the workspace in a very general
framework (see [25] and [26, chapter 4 (Workspace Determination)]). But it is a numerical resolution method, based on the method proposed in [27].

2. Stage 0: local condition necessary but not sufficient to belong to the border (reminders).

    The border  is traditionally broken down into the form of the following partition . For , all angles  are free (i.e. in 
). For , there are at least two free components among the  angles (the others being ). For , there is only one free component. We have shown in

[2,3] that the joints corresponding to configurations of  and of  corresponding to free components are necessarily aligned, which made it possible to write and
program the complete algorithm of determination of the points verifying this simple geometrical condition. is clearly a finite meeting of arcs. We have therefore
shown that  is included in a union of arcs of a circle defined by

or  denotes the Cartesian product and each set is determined analytically. It is either a singleton or an interval (open or closed). For each m , only one of the
sets  is not reduced to a singleton.

Note 1. It is possible that one or more of the parties ,  or  is empty, which does not invalidate the algorithm of step 0, valid for all the values   of .

3. Step 1: sufficient local condition but not necessary so that parts of arcs of a circle are not on the
border.

    Once we have determined the possible circles to which a point must necessarily belong to be on the border, we look, as is done in a classic way in the literature,
the local contribution of the infinitesimal variations of the angles which define this point. If it is possible for this point to evolve on either side of the circle, we
deduce that it is not on the border.

    On the contrary, if it remains locally on the same side of the circle, we will keep the point or all of these points (that is to say a part of the arc of the circle studied),
keeping as information the side in which it is located. This discrimination is usually made through studying symbolism and determining the spectrum and rank of a
matrix. On the contrary, in this Note, one can determine in the plane case, the sides where the point studied locally evolves with simple calculations of scalar
products.

    Let us now study one of the circles defined by (5), corresponding to an integer m fixed and noted . For , is an interval not reduced to a
singleton. The other intervals are a singleton. The angle  therefore varies in the meantime . The study of the infinitesimal variation of  brings nothing here,
since we know that the point  will move along the arc . However, we can assume that each of the angles , for , can vary infinitesimally around its value.
For , consider  defined by

We define  with

Consider . Dots , for  are dependent on , now fixed and  designates . Consider the application  : 
,  defined by

By adding null components, corresponding to the component , we can consider the gradient  and the hessian (symmetrical)  of the
function , calculated in  and write the limited development of  to order 2 in the vicinity of  Under the form

where h checks (7). Usually (for example in [7]), these elements are computed in symbolic form (formally), given below, in an explicit way.

Lemma 3.1 (Expression of  and diagonal terms of ) We note  vector angle rotation  of . Let's pose , for . We have for
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Lemma 3.2 We have then, for  :

If j ≤ i-1 , there is  and  dependent only on  with

If j ≥ i + 1 , there is  dependent only on  with

Note 2. The number  is of the same sign as the component of the displacement of the point  in the direction of  when the

angle undergoes a positive infinitesimal variation and that all the other components of h are zero.

    We will eliminate the parts of arcs of circle corresponding to points satisfying the following sufficient condition not to be on the border:

Indeed, in this case  evolves on both sides of the arc .

At first, unlike the literature, we are content to study only the case where a single component of  is non-zero, the others being zero (local diagonal criterion).
So let's fix . If we note  with , then (9) is written

    note that  is equivalent to ,  and aligned. According to [2,3],  therefore implies that . We make the reasonable assumption
in biomechanics or robotics that the points  cannot be confused, which implies that if , so . We therefore have, taking into account (6):

If Bj ≠ 0, then  and locally,  is of the same sign as 
(15a)

If Bj = 0, then  and locally,  is of the same sign as .
(15b)

    Note that, for this step, knowledge of the alignment of certain points, highlighted geometrically during step 0 (in [2,3]), is therefore fundamental.

Remark 3. According to remark 2, in the case (15a), one is interested in fact in the normal infinitesimal displacement of a point describing one of the arcs of
circle, as also remark Abdel-Malek for example in [7] . Limited development (8) is also present in this work, via the calculation of normal acceleration. In this
case (15b), on the other hand, examination of the normal component of the movement alone is no longer sufficient.

    The number  depends or not on , according to Lemmas 3.1 and 3.2. By varying j in  we can therefore eliminate all the parts of the arcs of
circle for which  changes sign and therefore keep only the parts of arcs of a circle for which the sign of  is locally constant, i.e.

We therefore have, using only the diagonal terms of , eliminated all the parts of arcs of a circle satisfying a sufficient condition which results in (13). A
discussion on the methodology to be adopted from now on and a comparison with the usual methods is presented in Appendix A so as not to burden this text.

    Finally, for each of the arcs of (5), either we therefore eliminate all of the studied arc, if none of its points are on the border, or we only keep a part (corresponding
to a finite meeting of arcs of a circle). If we make the choice (A.2), it is not certain that the preserved part correspond to points which are locally on the same side of
the circle. On the contrary, if we make the choice, (A.7), which takes longer to establish, it is certain that this part corresponds to points which are locally on the
same side of the circle and we then know the side of the arc of circle (inside or outside) where the point will evolve locally . Here again we can therefore keep the
part of the arcs of a circle which contains only points which surely do not inside it in the form (5).

    For all the examples presented here, the choice (A.2) has been made. However, as a check, it is interesting to then set up the choice (A.7) to check a posteriori that
all the arcs of the circles kept are guaranteed. It was then noted that all the arcs of circles are guaranteed.

    See Figure 6c where the arcs of circle kept from step 1 have been represented, with a small bar for each arc indicating the side where evolves .

4. Step 2: overall condition necessary and sufficient to be on the border.

    It now remains to eliminate the parts of an arc defined by (5) which are not on the border, this time using a global criterion. Indeed, locally, the point  can
remain on the same side of the arc, but the other side of the border can be reached for other angular values   far from those which define the arc. Abdel-Malek in [7,8]
soberly says that the border of the workspace is the envelope of the previously defined curves.

    We start from a point which we are sure belongs to the limit of the workspace: the point furthest from the origin of the set of arcs of circle defined by (5). It is
certain that this point belongs to an arc of circle of center the origin. Then, arc of circle by arc of circle, we turn, always in the same direction, by determining, for
each intersection of arcs of circle, the one whose direction of the tangent is as close as possible to the arc of circle that we just determined. Then, we keep the portion
of this arc between the point considered and the intersection with the nearest arc, among those that remain. The algorithm ends when you return to the starting point.
This step is simple in theory: it is indeed each time that we pass from an arc of a circle from the border to the next, to be able to deal with all the cases that may arise:
several circles can go through the same point, they can be tangent or concentric. In addition, the calculations being performed numerically, it is necessary to take into
account the machine precision in order to predict numerically whether the circles are intersecting, tangent or concentric (see section 6).

    The part D being connected but not simply connected, it is possible that its complement is not connected, that is to say that holes appear. The part of the border
which we have just defined in the form (5) is the external border, i.e. the common border of Dand the unbounded component of its complement. To determine the
other connected components of the border (the internal borders), our algorithm provides with certainty only the border of the hole containing the origin, if it exists
(see figure 6d). In this case, the point closest to the origin is then determined from among the arcs of circle defined by (5). If the hole containing the origin exists,
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one is sure again that this point belongs to an arc of circle of center the origin. Then, as before, we determine the arcs of the circle, step by step, stopping when we
return to the first point. Here, knowing the possible sides of the interior in relation to the arcs of a circle can be useful for eliminating finished meetings of

    We therefore finally completely determined the border of the workspace in the form (5).

5. Applications

    Two applications can be proposed immediately using the proposed method (but have not yet been programmed).

    First of all, since the border is known as (5), it is possible to solve the opposite problem on the border: that is, a point  of the plane given on the border, we can
determine the values   of all angles  such as . Let us note, in this respect, that our method makes it possible to propose, for each arc of
a circle of the border, a configuration given in (5) making it possible to describe the arc of circle in question. There exist cases where several given configurations
make it possible to describe the same portion of arc of circle, thus making the opposite problem with several possible solutions. Consider for example the system
with a number of degrees of freedom equal to  and whose values   are given by

Figure 5. Simulations for .  is drawn in blue, and is drawn in green. The calculated interior of the workspace is drawn in yellow. For step 1,
we obtain 7 arcs of a circle.

See figure 5. There are two possible configurations to describe a part of the circle with the origin center and which corresponds to the part of the border closest to the
origin.

    Another application is a simple criterion to know if a given point on the plane is in the workspace or not. It is clear that thanks to the data of (5), we can know if a
point is on the border or not. Suppose it is not on the border. If it is outside the circle of center origin and radius the greatest distance from the origin to the border, it
will surely be outside. Finally, by methodically and exhaustively counting the number of points of intersection of a given line segment with a set of circles given by
(5) and by considering the parity of the number obtained, we obtain a simple means of knowing if the point is outside or inside a workspace.

6. Implementation

    The algorithms used were implemented analytically, but without using symbolic calculation, under Matlab ®. This step therefore used the numerical calculation of
Matlab. During steps 0 to 2, it was essentially necessary to determine angles during the transition from Cartesian coordinates to polar coordinates. See details of the
algorithm of step 0 in [3]. In addition, during steps 1 and 2, it was necessary to test the nullity or the non-zero sign of certain quantities, which is necessarily done in
an approximate manner due to the rounding of calculations. We therefore chose a parameter  and replaced for example type equalities  by . More
precisely, for step 1, we chose  and for step 2, which had to be taken 100 or 1000 times larger in some cases, where p is larger.

    In robot design, it is sometimes important to be able to have explicit geometric characteristics of the borders of workspaces. We can therefore use, in this case, the
symbolic calculation of Matlab. When passing from Cartesian coordinates to polar coordinates, our codes use Matlab functions  and , which do not
support symbolic types. However, the functions  and  support them and it would therefore be possible to determine polar coordinates symbolically, insofar
as the lengths and angles are themselves converted into symbolic. In this case, one could naturally rigorously test the nullity and the signs of quantities defined in a
symbolic way.

7. Numerical simulations

    As in [3], for the numerical simulation, we consider a subject of height 1.80 m. The lengths of the upper limb were determined from the anthropometric data of
[4]. The lengths of the segments are given as the size ratio (0.108, 0.146 and 0.186 respectively for the hand, forearm and arm for the right upper limb). The angles
correspond to the maximum and minimum of the joints, corresponding to the horizontal abduction / adduction of the shoulder (-60 ° / 120 °); flexion / extension of
the elbow (0 ° / 130 °) and abduction / adduction of the wrist (-10 ° / 25 °). See Figure 1, where  and  is the shoulder,  the elbow,  the wrist, the segment 

 is the arm, , forearm and the hand. See Table 1 and Figures 2, 3 and 4.

case Segment length / size  (( )  (( ) figures

i 1 0.440 -60 120 2

ii 2 0.186; 0.254 -60; 0 120; 130 3

iii 3 0.186; 0.146; 0.108 -60; 0; -10 120; 130; 25 4

Table 1. Parameters used
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Figure 2. Simulations for . There is only one circular arc ( ) (in blue).

Figure 3. Simulations for . is drawn in green. The discrete surface scanned is plotted in yellow. Here, the three steps give the same results. The
number of arcs obtained is 4.

step 0 Step 1

2nd step
Figure 4. Simulations for .  is drawn in red and is drawn in green. The discreet swept area and the calculated interior of the workspace are
drawn in yellow. The numbers of arcs corresponding to steps 0,1 and 2 are respectively 16, 11 and 8.

i. Case i corresponds to the free arm, and the forearm and the hand blocked;
ii. Case ii corresponds to the free arm and forearm, hand blocked;
iii. Case iii corresponds to the arm, the forearm and the free hand.

Table 2. Geometric definition of the arcs

p = 1 SIII

p = 2 SIII

p = 3 SII SIII



type
of a circle in the form (5).

    We give in Table 2 the description of  in the form of a union of arcs (5) and the intervals  for correspondent, for the full case iii.
Each set  for is either a singleton or a closed set. All angles in this Note are given in degrees.

    Now consider a (virtual) system with a number of degrees of freedom equal to  and whose values   are given by

See figure 6.

step 0 Step 1

step 1 (with the evolution side of ) 2nd step
Figure 6. Simulations for .  is drawn in blue,  is drawn in red and is drawn in green. The discreet swept area and the calculated interior of
the workspace are drawn in yellow. The number of arcs corresponding to steps 0,1 and 2 are respectively 506, 75 and 9.

    Random prints were made on the corners and the lengths l . The number p of segments was varied from 2 to 12 by performing 200 calculations for each value
of p . The calculations were made on a computer equipped with Windows 7 Professional, and an Intel (R) Core (TM) i5-6300HQ processor at 2.30 GHz (64 bits)

    We had shown in [3], that the algorithm of step 0, the longest, was in  or is real. A linear regression on the decimal logarithm of the computation time
confirms this: it gives a correlation equal to 0.9765 and a value of a equal to 3.5289. If we regress the number of arcs in step 0, this also confirms these calculations:
it gives a correlation equal to 0.9950 and a value of a equal to 2.7771. For step 1, we find a correlation equal to 0.9356 and a value of a equal to 1.5190. For step 2,
the average number of arcs seems to stabilize with p : for , we find a number close to 11. We also note that up to , the calculation times are less than  s
and that up , 95% of the calculation times are less than 1.0 s.

Θ1(∘) Θ2(∘) Θ3(∘)

II [−60, 120] {0} {0}

II {120} [0, 130] {0}

III {120} {130} [0, 25]

III [−60, 120] {130} {25}

III {−60} [0, 130] {25}

III {−60} {0} [10, 25]

III [−60, −55.1005] {0} {−10}

III {−60} {0} [−10, 0]

S = SI ∪ SII ∪ SIII Θi i ∈ {1, 2, 3}
Θi i ∈ {1, 2, 3}

p = 6

l = (0.20, 0.20, 0.15, 0.35, 0.20, 0.20),

θ− = (−120, −120, −30, −90, −45, −23),

θ+ = (60, 170, 30, 91, 23, 24).

Ap

p = 6 SI SII SIII

θ±

O(ap) a

p ≥ 5 p = 4 0.1
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Figure 7. Logarithm of the computation time

See figure 7.

8. Limitations

    In practice, according to what is done in the literature,  do not exceed , (corresponding to computation times lower than s). It would seem that until ,
the calculations are of much longer duration (on average less than  min.) Beyond, the execution time is enormous (on average greater than min.).
Programmed under Matlab, which is an interpreted language, certain loops (which cannot be parallelized) can be slow. Optimized programming in a compiled
language would therefore gain speed.

    In Section 4, we discussed the difficulties of detecting internal borders that do not contain the origin. Systematic scanning techniques of graphs would make it
possible to detect closed curves which could constitute internal boundaries, by searching for all the possible series of arcs of circles among those detected during step
1.

    Finally, the only mathematical constraint respected is the constraint (1). Other constraints may appear for larger values   of p than that given in example: it may be
that one of the segment intersects or is too close to another segment, which is not possible mechanically. We could verify that this case never happens for
small values   of p . Taking this constraint into account seems to be a much more difficult problem!

9. Conclusion

    We have determined the border of a plane workspace in an analytical and explicit way, only by explicit calculations, of angles, of scalar products, of intersections
of arcs of circle, without any calculation in symbolism, nor of resolution numeric of nonlinear problems. More intuitive since, based solely on simple calculations of
scalar products, this method seems to us more efficient; it does not use symbolic calculation for the calculation of the Jacobian nor the numerical determination of
the spectrum of matrix, which is very consumer in computing resources and in computing time.

    A natural extension of this work is the extension in dimension 3. More technical, it should be able to extend naturally, by taking again for example the angles of
Euler, the rotation matrices and the matrices  homogeneous, called Denavit-Hartenberg [28,29] or with the recommendations of [30]. The arcs of a circle would
then be replaced by portions of surfaces in space, such as for example spheres or tori. The simple geometrical idea of   alignment of step 0 should remain as well as
the criterion of step 1. Step 2 would be more subtle, the scanning of the surfaces having to be done in two dimensions.

Annex A. Complements on the method used
    We therefore have, using only the diagonal terms of , eliminated all the parts of arcs of a circle satisfying a sufficient condition which results in (13). However,
those that remain do not necessarily verify the negation of (13), which is written:

In that case  evolves on the same side of the arc .

Contrary to the literature, and therefore, more simply, a first choice consists in being satisfied with these calculations: one thus supposes checked the

diagonal local criterion : defined by (16) where the sign is constant, equal to .
(A.2)

In this case, (A.1) is only true if  has only a non-zero component. The parts of arcs of a circle which have been preserved therefore have no sign of
locally guaranteed. We will see for step 2 (section 4) that we start from a guaranteed arc, that is to say of which we are certain that (A.1) is verified. Gradually,
each local sign of will then necessarily be guaranteed. Thus, at the end of the algorithm, for all the parts of arcs of a circle preserved, (A.1) will be true.
For this choice, no calculation of rank, spectrum and calculation in symbolism was therefore necessary.
A second choice now consists in wanting to guarantee the local sign of along the preserved arcs, as is conventionally done. Strictly speaking, this does
not bring much, except to eliminate a posteriori some preserved arcs of circle which would not verify (A.1). We will see below, numerically, that these arcs are
very few. We then study the quadratic form defined by (9), but which we will determine explicitly and without symbolic calculation as is usually done. In
addition, it is only necessary to define the part relating to the angles corresponding to the null, containing the cases where the points are aligned. Indeed,
even if it means reordering the elements of ,  and of , we can assume without loss of generality, that there is  with

We then decompose ,  and  in blocks with this partition: , , . We have

Taking into account (16) and (A.4), a necessary and sufficient condition for (A.1) to take place is therefore

p 6 1.0 p = 11
7.0 50.9

AiAi+1

(4, 4)

C

∃ε0 ∈ {−1, 1}, ∃a0 ∈ R
∗
+, ∀h ∈ R

p, vérifiant (7)(Θ + h ∈ F  et 0 ≤ ∥h∥ ≤ a0)⟹ ε0ρ(h) ≥ 0. (A.1)

Ap(Θ + h) Cm

ε0

h ρ(h)

ρ(h)

ρ(h)

Bj

(εj)1≤j≤p
j≠i

B C q ∈ {0, . . . , p − 1}

∀k ∈ {1, . . . , q}, Bk = 0,
∀k ∈ {q + 1, . . . , p − 1}, Bk ≠ 0.

(A.3a)

(A.3b)

h B C h = ( )H1

H2
B = ( )0 B2 C = ( )

D E

tE F

ρ(h) = t
H1DH1 + ε0

p−1

∑
j=q+1

(ε0εjBj + o(1))|hj| + o(∥h∥2).



Conversely, a sufficient (but no longer necessary) condition for (13) to take place is:

We are therefore led to make the following second choice, as in the literature:

Total local criterion : defined by (A.5) or (A.6).
(A.7)

It is therefore necessary to study the sign of a quadratic form, by classically studying the spectrum of the associated matrix. However, we restrict ourselves to
the components corresponding to the aligned points (containing the cases where the corresponding angles are free). We can explicitly determine the
coefficients of , only according to the distances between the points , without going through symbolic calculation, as shown in the following lemma:

Lemma A.1 (Expression of non-diagonal terms of  (corresponding to the terms null) For  in  with , dots , ,  and 
 are aligned and we have

There are simple sufficient conditions, not expressed here, relating to , without going through its spectrum, which ensure that (A.5) or (A.6) is verified. In
this case, all the arcs of circles have a guaranteed sign. As a last resort, if none of them is verified, then as in the literature, the spectrum of . We will see,
numerically, that these cases are very rare
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